sábado, 27 de agosto de 2016

ROSETTA CAPTURA UNA POTENTE EMISIÓN

Emisión en el Cometa

ROSETTA CAPTURA UNA POTENTE EMISIÓN


Durante una serie de observaciones sin precedentes a principios de este año, Rosetta capturó inesperadamente una espectacular emisión en 67P/Churyumov-Gerasimenko, quizá provocada por un deslizamiento de tierra.
Cuando se produjo, el 19 de febrero, nueve de los instrumentos de Rosetta, incluidas sus cámaras, colectores de polvo y analizadores de gas y plasma, vigilaban el cometa a unos 35 km de distancia, en una secuencia programada y coordinada.
Como comenta Matt Taylor, científico del proyecto Rosetta de la ESA: “A lo largo del pasado año, Rosetta ha demostrado que, aunque la actividad que provocan puede prolongarse, estas emisiones son altamente impredecibles, por lo que capturar un evento así fue cuestión de suerte”.
“Dio la casualidad de que, en ese momento, la mayoría de los instrumentos apuntaban al cometa y, ahora, todas esas mediciones simultáneas nos ofrecen los datos más completos jamás recogidos sobre una emisión”. 

Evolución de la emisión
Pocos días tras producirse la emisión, los datos recopilados se enviaron a la Tierra, donde su posterior análisis ha permitido reconstruir claramente la cadena de eventos, que se describen en un artículo dirigido por Eberhard Grün, del Instituto Max-Planck de Física Nuclear en Heidelberg, Alemania, y publicado en la revista Monthly Notices of the Royal Astronomical Society

¿Qué instrumentos detectaron la emisión?
A las 09:40 GMT, la cámara de gran angular OSIRIS captó en la coma un fuerte brillo que se desarrollaba desde una región del cometa inicialmente en la sombra.
A lo largo de las dos horas siguientes, Rosetta registró datos de la emisión que multiplicaban hasta por cien los niveles base de algunos instrumentos. Por ejemplo, entre las 10:00 y las 11:00 GMT, ALICE detectó el brillo ultravioleta de la luz solar reflejada en el núcleo y un fuerte aumento del polvo emitido, que se sextuplicó. Al mismo tiempo, ROSINA y RPC captaron un aumento significativo de gas y plasma (multiplicándose su densidad por un factor de 1,5–2,5) alrededor del satélite.
Por su parte, MIRO registró un aumento de 30 ºC en la temperatura del gas colindante y, poco después, Rosetta fue azotada por una nube de polvo: el analizador GIADA registró un máximo hacia las 11:15 GMT y, durante las tres horas siguientes, se detectaron casi 200 partículas, cuando en otros días del mismo mes lo normal era detectar de 3 a 10.
Al mismo tiempo, el teleobjetivo de la cámara OSIRIS comenzó a fotografiar los granos de polvo emitidos durante la emisión. Entre las 11:10 GMT y las 11:40 GMT, se produjo una transición en las imágenes, que pasaron de mostrar granos distantes o lo bastante lentos como para aparecer en forma puntos a mostrar estas partículas como estelas debido a su cercanía o velocidad.
Además, los sensores de estrellas utilizados para la navegación y el control de la actitud de Rosetta midieron un aumento en la luz emitida por las partículas de polvo como consecuencia de la emisión.
Gracias a su situación, montados a 90º en el lateral del satélite que aloja la mayoría de los instrumentos científicos, los sensores pudieron ofrecer datos únicos sobre la estructura tridimensional y la evolución de la emisión.
Los astrónomos en la Tierra también detectaron un incremento en la densidad de la coma durante los días siguientes a la emisión.

Lugar de la emisión
Una vez examinados los datos disponibles, los científicos creen haber identificado la fuente de la emisión.
“A partir de las observaciones de Rosetta, creemos que se originó en una pendiente pronunciada en el lóbulo mayor del cometa, en la región de Atum”, explica Eberhard.
El hecho de que la emisión comenzara cuando esta área acababa de salir de la sombra sugiere que la tensión térmica en el material superficial podría haber provocado un deslizamiento de tierra que dejó hielo de agua expuesto a la radiación solar. El hielo se habría evaporado rápidamente, arrastrando polvo consigo hasta producir la nube de residuos detectada por OSIRIS.
“La combinación de las imágenes recogidas por las cámaras de OSIRIS con los datos recopilados por GIADA durante la fase de impacto del polvo nos lleva a pensar que el diámetro del cono de polvo fue de gran tamaño —admite Eberhard—. Por eso creemos que la emisión pudo deberse a un deslizamiento de tierra en la superficie, y no a una ráfaga concreta que expulsara materia desde el interior, por ejemplo”.
Matt añade: “Seguiremos analizando los datos para profundizar en los datos de este evento en concreto, y también para ver si nos ayuda a comprender la multitud de emisiones que hemos detectado a lo largo de nuestra misión”.
“Es fantástico ver cómo los distintos equipos responsables de los instrumentos colaboran para estudiar cómo se originan estas emisiones en los cometas”.


Nota para los editores
El artículo “The 19 Feb. 2016 outburst of comet 67P/CG: A Rosetta multi-instrument study,” de E. Grün et al., está publicado en la revista Monthly Notices of the Royal Astronomical Society. doi: 10.1093/mnras/stw2088
Para más información:
Eberhard Grün
Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
Correo electrónico: eberhard.gruen@mpi-hd.mpg.de
Matt Taylor
ESA Rosetta project scientist
Correo electrónico: matthew.taylor@esa.int
Markus Bauer 



ESA Science and Robotic Exploration Communication Officer




Teléfono: +31 71 565 6799





Móvil: +31 61 594 3 954





Correo electrónico: markus.bauer@esa.int



FUENTE

Rosetta captura una potente emisión / Spain / ESA in your country / ESA


No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.